This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

Table 1: CDH1 Rule Specifications for the ACMG/AMP Variant Curation Guidelines

ACMG/AMP Criteria	Original ACMG/AMP Rule Summary	CDH1 Rule Specifications							
Codes	, , , , , , , , , , , , , , , , , , , ,	Stand Alone	Very Strong	Strong	Moderate	Supporting	Comments		
PVS1	Null variant in a gene where LoF is a known mechanism of disease		Per ClinGen SVI guidelines with the exception of canonical splice sites	Per ClinGen SVI guidelines Other CDH1 caveats: - Use the strong strength of evidence for canonical splice sites - CDH1 Exonic deletions or tandem duplications of inframe exons	Per ClinGen SVI guidelines Other CDH1 caveats: - G to non-G variants disrupting the last nucleotide of an exon - Canonical splice sites located in exons demonstrated experimentally to result in in-frame partial	Per ClinGen SVI guidelines	RNA analysis is recommended for splicing alterations, and if the RNA evidence does not support the prediction, the strength should be updated PP3 cannot be applied for canonical splice sites		

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

			- Truncations in NMD-resistant zone located upstream the most 3' well-characterized pathogenic variant c.2506G>T (p.Glu836*). Use PVS1_moderate if premature stop is downstream of this variant	skipping/insertion (e.g., Exon 3 donor site)		
PS1	Same amino acid change as a previously established pathogenic variant regardless of nucleotide change	 	Per original ACMG/AMP guidelines	<u></u>		Variant must not impact splicing
PS2	De novo (both maternity and paternity confirmed) in a patient with the disease and no family history	 ≥Two patients with DGC &/or LBC w/ parental confirmation	One patient with DGC &/or LBC w/ parental confirmation			Use ClinGen's <i>de novo</i> point system for a highly specific phenotype (see Table S2)

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

PS3	Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product	 	RNA assay demonstrating abnormal out-of- frame transcripts		RNA assay demonstrating abnormal in-frame transcripts	This rule can only be applied to demonstrate splicing defects.
PS4	Prevalence of variant in affected individuals is significantly increased compared to controls	 Sixteen families meet HDGC criteria	Four families meet HDGC criteria	Two families meet HDGC criteria	One family meets HDGC criteria	This rule assumes 30% penetrance in individuals with pathogenic variants. For example, if the variant in observed in 3 families, at least one of those families need to meet criteria for HDGC in order to apply this rule. PS4 cannot be applied to variants that meet BS1 or BA1
PM1	Located in a mutational	 				Do not use for this gene
	hot spot and/or critical and					
	well-established functional domain without benign					
	variation					

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

PM2	Absent in population databases		<one of<br="" out="">100,000 alleles in gnomAD cohort; if present in ≥2 individuals, must be present in <one out of 50,000 alleles within a sub-population</one </one>	Use gnomAD to determine allele frequency. Beware of technical limitations that can inaccurately represent allele frequency in this population database
PM3	For recessive disorders, detected in trans with a pathogenic variant	 	 	 Does not apply to this gene
PM4	Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stoploss variants	 	 Per original ACMG/AMP guidelines	 No rule specification proposed. Variant example - <i>CDH1</i> c.2647T>C (p.Ter883Glnext*29)
PM5	Novel missense change at amino acid residue where	 	 	 Do not use rule at this time

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

	a different missense variant is pathogenic					
PM6	Assumed <i>de novo</i> , but w/o confirmation of paternity and maternity	 ≥Four patients with DGC &/or LBC w/o parental confirmation	≥Two patients with DGC &/or LBC w/o parental confirmation	One patient with DGC &/or LBC w/o parental confirmation		Use ClinGen's <i>de novo</i> point system for a highly specific phenotype (See Table S2)
PP1	Cosegregation in multiple affected family members in a gene definitively known to cause the disease	 	≥Seven meioses across ≥2 families	Five-six meioses across <u>></u> 1 families	Three-four meioses across >1 families	Based strength of rule code on number of meioses across one or more families
PP2	Missense variant in a gene with a low rate of benign missense variation & where missense variants are a common mechanism of disease	 				Do not use rule at this time
PP3	Multiple lines of computational evidence	 		Variants affecting the same splice	At least three in silico splicing	Rule code is <u>only</u> for non- canonical splicing variants. Code also does not apply to

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

	support a deleterious effect on the gene or gene product			site as a well- characterized variant with similar or worse in silico/ RNA predictions	predictors in agreement (.Human Splicing Finder (HSF), Maximum Entropy (MaxEnt), Berkeley Drosophilia Genome Project (BDGP), or ESEfinder)	last nucleotide of exon 3 (c.387G). Do <u>not</u> use protein-based computational prediction models for missense variants
PP4	Patient's phenotype or family history is highly specific for a disease with a single genetic etiology		 			Use PS4 in place of PP4
PP5	Reputable source recently reports variant as pathogenic		 			Do not use rule at this time
BA1	Allele frequency is greater than expected for disorder	MAF cutoff of 0.2%	 			99.99% CI; subpopulation must have a minimum of five alleles present

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

BS1	Allele frequency is greater than expected for disorder	MAF cutoff of 0.1%	 	 	99.99% CI; subpopulation must have a minimum of five alleles present
BS2	Observed in a healthy adult individual for a dominant disorder with full penetrance expected at an early age		 Variant seen in ≥10 individuals w/o DCG, SRC tumors, or LBC & whose families do not suggest HDGC	 Variant seen in ≥3 individuals w/o DCG, SRC tumors, or LBC & whose families do not suggest HDGC	
BS3	Well-established <i>in vitro</i> or <i>in vivo</i> functional studies show no damaging effect on protein function or splicing		 Functional RNA studies demonstrating no impact on transcript composition	 	This rule can <u>only</u> be used to demonstrate lack of splicing and can be downgraded based on quality of data
BS4	Lack of segregation in affected members of a family		 Per original ACMG/AMP guidelines	 	Beware of the presence of phenocopies (e.g., breast cancer) that can mimic lack of segregation. Also, families may have more than one pathogenic variant

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

					contributing to another AD disorder
BP1	Missense variant in a gene for which primarily truncating variants are known to cause disease	 		 	Does not apply to this gene
BP2	Observed in a healthy homozygous individual, or in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant	 	Variant observed in trans w/known pathogenic variant (phase confirmed) OR observed in the homozygous state in individual w/o personal &/or family history of DGC, LBC, or SRC tumors	Variant is observed in cis (or phase is unknown) w/ a pathogenic variant	Evidence code is dependent on strength of data. Take consideration of quality of sequencing data when applying code. Note that code requires knowledge of individuals' phenotype. Therefore, data from population databases should only be used when phenotypic info is available
BP3	In-frame deletions/insertions in a	 		 	Do not use rule at this time

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

	repetitive region without a				
	known function				
BP4	Multiple lines of	 	 	Splicing predictions	This rule can only be used
	computational evidence			only. At least three	when splicing predictions
	suggest no impact on			in silico splicing	models suggest no impact
	gene/gene product			predictors in	on protein. Do <u>not</u> use
				agreement	protein based
				(Human Splicing	computational prediction
				Finder (HSF),	models for missense.
				Maximum Entropy	variants
				(MaxEnt), Berkeley	
				Drosophilia	
				Genome Project	
				(BDGP), or	
				ESEfinder)	
				,	
BP5	Variant found in a case	 	 	Per original	This applies if a P/LP variant
	with an alternate			ACMG/AMP	is identified in an alternate
	molecular basis for disease			guidelines	gene known to cause HDGC
	line and the state of the state			8	(e.g., CTNNA1)
					(c.g., CIIVIVAL)

Related publication(s): PMID 30311375

Date Approved: September 19, 2018

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

This version specified for the following genes: CDH1

Expert Panel Page: https://www.clinicalgenome.org/affiliation/10014

BP6	Reputable source recently reports variant as benign	 	 		Do not use rule at this time
BP7	Synonymous variant which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site & the nucleotide is not highly conserved.	 	 	Synonymous variants where nucleotide is not highly conserved; variant is the reference nucleotide in one primate and/or >3 mammal species	Note the <i>CDH1</i> rule specification does <u>not</u> require a benign <i>in silico</i> splice prediction. This allows use with BP4, as appropriate, to classify variants meeting both criteria as likely benign

Related publication(s): PMID 30311375

This document is archived and versioned on ClinGen's website. Please check https://www.clinicalgenome.org/affiliation/10014/docs/assertion-criteria for the most recent version.

Date Approved: September 19, 2018